AWS Feed
Scaling indexing and search – Algolia New Search Architecture Part 2

51352583871 ec53b1fed4

What would a totally new search engine architecture look like? Who better than Julien Lemoine, Co-founder & CTO of Algolia, to describe what the future of search will look like. This is the second article in a series. Here’s Part 1.

Search engines need to support fast scaling for both Read and Write operations. Rapid scaling is essential in most use cases. For example, adding a vendor in a marketplace generates a spike of indexing operations (Write), and a marketing campaign generates a spike of queries (Read). In most use cases, both Read and Write operations scale but not at the exact same moment. The architecture needs to handle efficiently all these situations as the scaling of Read and Write operations varies over time in most use cases.

Until now, search engines were scaling with Read and Write operations colocated on the same VMs. This scaling method brings drawbacks, such asWrite operations unnecessarily hurting the Read performance and using a significant amount of duplicated CPU at indexing. This article explains those drawbacks and introduces a new way to scale more quickly and efficiently by splitting Read and Write operations.

1. Anatomy of an index

HighScalability?d=yIl2AUoC8zA HighScalability?d=ZMKU6pOd71k